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Risk-Based Design of Regular Plane Frames Subject to
Damage by Abnormal Events: A Conceptual Study
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Abstract: Constructed facilities should be robust with respect to the loss of load-bearing elements due to abnormal events. Yet, strengthening
structures to withstand such damage has a significant impact on construction costs. Strengthening costs should be justified by the threat and
should result in smaller expected costs of progressive collapse. In regular frame structures, beams and columns compete for the strengthening
budget. In this paper, we present a risk-based formulation to address the optimal design of regular plane frames under element loss conditions.
We address the threat probabilities for which strengthening has better cost-benefit than usual design, for different frame configurations,
and study the impacts of strengthening extent and cost. The risk-based optimization reveals optimum points of compromise between com-
peting failure modes: local bending of beams, local crushing of columns, and global pancake collapse, for frames of different aspect ratios.
The conceptual study is based on a simple analytical model for progressive collapse, but it provides relevant insight for the design and
strengthening of real structures. DOI: 10.1061/(ASCE)ST.1943-541X.0003196. © 2021 American Society of Civil Engineers.
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Introduction

Modern structural engineering requires built structures to be robust
with respect to damage caused by abnormal events of exceptionally
large intensity but low probability of occurrence. Following the re-
cent partial or full collapses of buildings like Ronan Point Tower,
Skyline Plaza, Alfred P. Murrah, and the World Trade Center, de-
sign requirements for structural robustness were introduced in
modern design codes [ASCE 7 (ASCE 2016); ASCE 41 (ASCE
2017); DoD 2013; GSA 2013]. The design of robust structures
is achieved by analyzing progressive collapse under potential initial
damage.

Under multiple hazards, the probability of structural collapse
can be evaluated as (Ellingwood and Dusenberry 2005; Ellingwood
2006, 2007)

pc=PICl =Y P[CILD.H|P[LD|H]P[H] (1)

where C = collapse; P[H] = probability of hazard occurrence;
P[LD|H] = conditional probability of local damage, given hazard
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H; and P[C|LD, H| = conditional probability of collapse, given
local damage LD and hazard H. In Eq. (1), the sum over H indi-
cates the multiple hazards the structure is exposed to (for example,
loads due to vehicular collisions, explosion, fire, and terrorist
attacks), and the sum over LD represents the different initial dam-
age states the structure can experience (e.g., local damage, support
subsidence, internal or external column loss, and penultimate
column loss).

Some terms in Eq. (1) depend on structural mechanics, while
others depend on human, social, and political factors. A risk analy-
sis of the structure, considering its surrounding environment and
intended use, can address control of the hazards or reduction of
their rates of occurrence (P[H]). To some extent, protective mea-
sures arising from risk analysis can limit local damage produced by
hazard H (term P[LD|H]). Structural mechanics controls the terms
P[LD|H] and P[C|LD, HJ; this last related to damage propagation
following initial damage. Threat-independent approaches to robust
design assume that local damage will occur, with loss of load-
bearing elements, and focus on the damage propagation term.

The damage propagation analysis can be made independent of
the nonstructural (social, environmental, political) factors by con-
sidering initial damage probability as an independent parameter,
following Beck (2020) and Beck et al. (2020)

pip = Y _P[LD|H]P[H] (2)

where p;p = probability of local damage, like loss of a column,
loss of a load-bearing wall, and loss of a support.

In this paper, we study the progressive collapse of regular frame
structures subject to initial damage, like loss of columns and ad-
jacent beams. A regular frame is understood as one with the same
bay length over height, and the same height for all floors. Specifi-
cally, we address the optimal design of regular frame buildings,
considering the impacts of initial damage due to abnormal events.
We employ the formulation of Beck et al. (2020), which considers
the usual loading condition as one of the “hazards” in Eq. (1), with
unitary probability of occurrence. The risk-based formulation looks
for the minimum total expected costs of the building structure,
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which includes construction costs (C.,,,.), cost of strengthening
the frame to produce alternative load paths, cost of initial damage
(CLp), and eventual costs due to damage propagation (Cpp.p) and/
or collapse due to damage propagation (C¢zp), Where subscript

Find: {Aj. A}

(+)pp is for damage propagation. The design variables are the de-
sign factors for beams (Ag) and columns (A¢). With these terms, the
risk-optimization problem is stated as (Beck and de Santana Gomes
2012; Beck et al. 2015, 2019)

which minimizes: Crg(Ag, Ac) = Ceonstr. + PLo(Crp + PopioCorip + PeienCein) + PyCnie

subjectto: A\g, A\c > 0

In Eq. (3), py = probability of failure under normal loading
conditions; and Cyc = corresponding cost of failure term. This
last term is considered mainly to cover the cases where p; p, is very
small, following Beck et al. (2020). Note that the probability
of local damage p;p in Eq. (3) is the lifetime (herein, 50-year)
probability. This can be related to yearly threat probabilities by
p=—¢n[l—prpl/50.

The damage propagation and collapse terms in Eq. (3) depend
on local failure of beams, local failure of columns adjacent to the
initial damage, and global failure of columns (pancake failure).
These probability and cost terms are described later in the paper.

In this paper, we investigate optimal designs resulting from
Eq. (3) when applied to regular plane frames of varying aspect ra-
tios, extents of initial damage, strengthening decisions, and other
factors. The analysis is a significant extension of results presented
in Beck et al. (2020, 2021). In particular, herein we address the
competition between local bending, local crushing, and global pan-
cake failure modes for frames of varying aspect ratios. In this paper,
we do not address practical design aspects such as binding, struc-
tural fuses, compressive arch, and Vierendeel actions. We employ a
simple analytical model for the progressive collapse that considers
the plastic bending collapse of beams and the crushing collapse of
columns. The model is limited to plane frames and to gravitational
loads. Results provide insight that can be useful for actual structural
design but which needs to be verified using more complete models
(Gerasimidis and Sideri 2016; Pantidis and Gerasimidis 2018) and
specialized software (Adam et al. 2018).

One important aspect of design for robustness is the threat
probability that justifies strengthening structural elements to pro-
vide alternative load paths, for instance. Addressing this issue,
Beck et al. (2020) introduced the concept of a threshold column
loss probability. Herein, we address local initial damage of different
magnitude, potentially affecting a larger number of columns; also

number of columns n¢

LxH

yeinf,s

number of stories ng

beams and slabs. Therefore, we recall the concept by giving it a
more general name:

“Local damage probability threshold pi, is the value above
which design for alternative (load) paths under discretionary local
damage has positive cost-benefit, in comparison to usual design.”

In this paper, we make an extensive investigation of how the
pih value changes for frames of varying aspect ratios for different
extents of initial damage and strengthening decisions.

The remainder of this paper is organized as follows. The
mechanical model for damage propagation and collapse of regular
frames under gravity loads is presented in the “Progressive Collapse
of Regular Plane Frames: Mechanical Model” section. Formulation
of the cost functions for risk-based optimization is presented in
the “Formulation of the Cost-Benefit Risk-Optimization Problem”
section. Numerical results are presented in the “Results for the
Reference Case” section for a reference frame case and in the “Re-
sults for Other Frame Configurations” section for several variants.
Conclusions are presented in the “Concluding Remarks” section.

Progressive Collapse of Regular Plane Frames:
Mechanical Model

Basic Formulation

This paper addresses the design and strengthening of regular two-
dimensional multistory multibay frames, as illustrated in Fig. 1.
The mechanical model for damage propagation and progressive
collapse, under gravity loads and initial damage, is based on
Masoero et al. (2013). The model targets steel or reinforced con-
crete (RC) frames and considers the bending failure of beams and
the crushing failure of columns. The model considers regular
frames with n, columns and n; stories and an initial damage event

s

bending collapse local crushing failure

s s

i 3 K3l

global pancake collapse  local crushing turning

into bending collapse

(b)

Fig. 1. (a) Sketch of the regular plane frame; and (b) collapse mechanisms.
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leading to failure of n, . columns and n, ; stories, where the sub-

script r is for removed. Here, n, ; refers to the vertical extent of

the initial damage [Fig. 1(a)]. Beam length is L for all spans,
and column height is H for all stories.

The simple analytical model of Masoero et al. (2013) has a few
acknowledged limitations, which should be considered when inter-
preting results in this paper:

1. The model is limited to gravitational loads: wind, earthquake,
and other lateral loads are not considered; out-of-plumbness
is not considered,

2. As a plane model, floor and other three-dimensional effects are
ignored. Neglecting floor effects may underestimate the resis-
tance significantly (He et al. 2019),

3. Compressive arching effects significantly increase the resistance
to progressive collapse but are not considered in the model, and

4. Strength and failure of beam-column connections are not
considered.

Albeit simple, the model is useful for a conceptual cost-benefit
analysis of design against progressive collapse. With removal of
n, . columns of n, ( stories, the frame may suffer bending collapse
of n, . + 1 bays, or local crushing failure of two adjacent columns,
as illustrated in Fig. 1(b). Local crushing may propagate horizon-
tally, leading to bending collapse of n, . + 3 bays, and so on, even-
tually extending the full horizontal extent of the frame, leading to
global pancake collapse.

In the following, superscript / is employed for the intact struc-
tures. Superscripts B and P refer to bending and pancake collapse.
Pancake collapse can be local (P, loc) or global (P, gl). Further-
more, perfect brittleness is denoted e/, whereas ideal plastic behav-
ior is written as pl. This notation follows Masoero et al. (2013) for
easy cross-referencing. The whole formulation is presented in terms
of distributed loads ¢,,. The plastic hinge moment for beams is B,,
and crushing strength of columns is R,.

For the intact structure, the ultimate strength in bending collapse
is obtained as

16B
1.B.pl )
u = TZV (4)
This plastic solution is derived from the kinematic theorem, con-
sidering a triple-hinge plastic mechanism. In case of damage to n, .
columns, bending collapse strength is given by

B,pl 4Bv

qc (nr.c) = m (5)

For the intact structure, static crushing of the columns occurs
when maximum compressive force at base equals total axial
strength, leading to the global pancake collapse strength

LP _ R, ne
! Lns (nc - 1)

(6)

In case of local damage, local and global pancake collapses are
possible. In the case of local pancake, overload is directed to the
two nearest intact columns. Brittle failure occurs for

C1".10&,21( ) — RC !
pemn Lng (2 - n(n_jl + nnc(l - %))

(7)

In case of damage to n, . columns, brittle global pancake col-
lapse occurs for

0 R, (n,—n,,
qﬁ’,gl.d( c nc(nc nr.c) (8)

Ny Ny s) = ;
) = Lo (e = D 4 172) — 2%y o)
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In our implementation, we consider the ductile failure of beams
and the brittle elastic failure of columns. Hence, our analysis is
representative of RC frame buildings. Following the developments
of Masoero et al. (2013), the dynamic load amplification factor
is DAF =1 for beams and DAF = 2 for columns. This is closely
related to the recommended DAF values for deformation-controlled
plastic failure of beams, and load-controlled failure of columns
(GSA 2013).

Reference Case

Several frame and initial damage configurations are studied, as
detailed later in the paper. In order to organize comparisons, a
so-called reference case is initially considered: a frame with eight
stories and eight bays (n, X (n. — 1) = 8 x 8), with beam length
L =2H = 6 m. This frame is initially designed considering nor-
mal loading conditions and later strengthened considering discre-
tionary removal of a single column and two adjacent beams from
one bay (n%, = 1, n?; = 1). The superscript (-) refers to the initial
discretionary damage for which the frame is strengthened.

The reference value for the probability of local damage is
prp = 0.1, as detailed later. This 50-year probability corresponds
to an annual threat probability of 2.1 x 1073, Risk-optimization
results are computed for 1076 < p,p < 1.

Design under Normal Loading Condition

In the following, numerical results are presented for the reference
frame configuration. The nominal dead and live loads are L, =
D, = 1(kN/m). Under normal loading conditions, the required
beam strength is [ASCE 7 (ASCE 2016)]:

2 2
NLC _ L I.B.pl _ L

=—qy = 1.2D, +1.6L,) = 7.41 kN -
y 16¢q 16¢>( + ) m  (9)

Superscript (-)M€ refers to the normal loading condition. The

required column strength is

L 1 L —1
RYC = nY((;erl )q{"P - n‘((;l:l ) = (1.2D, + L.6L,)
= 140.55 kN (10)

In Egs. (9) and (10), ¢ = 0.85 is employed herein to design the
RC frame. Note that, for design of compression-controlled ele-
ments like columns [Eq. (10)], the design factor would be 0.85/
0.65 = 1.3 larger. This should be taken into account when interpret-
ing optimal design factors for columns found herein. In the remain-
der of this text, the frame designed under normal loading conditions
is referred to as the normal frame.

Strengthening under Initial Damage Condition

In the following, numerical results are presented for the reference
case, where strengthening is considered for one column and two
beams removed from one floor. Yet, it is assumed that any column
of the first floor could be lost; hence, all columns and all beams of
the first two floors need to be strengthened. The superscript (-)°
refers to the initial damage, for which the frames are strengthened.
This is to distinguish from progressive failure involving damage to
n, . columns.

Beams and columns are strengthened in such a way as to
provide an alternative path to the loads supported by the removed
elements (Alternate Path Method, GSA 2013). For the beams to
bridge over a single removed column, the required bending strength
is [ASCE 7 (ASCE 2016)]
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LZ(HOC) LZ
B, = 1) = gl =

=153kN-m (11)

(12D, +0.5L,)

Considering load redistribution, the required strength for
adjacent columns is

R(c) (ng,(,‘v I’l?s)

L -1 9 .
= Max |:RQ]LC,% (2 _ ncn + n(B’c <1 _ %))qi’.loc.d]

= 162.1 kN (12)

with ¢f°¢¢ = (12D, 4 0.5L,) = 1.7 kN/m. In strengthening,
we consider ¢ = 1, as recommended in ASCE 41 (ASCE 2017).
In Eq. (12), operator Max]] is used to also consider the required
column strength under normal loading condition. This operator
is not required in Eq. (11) because the impact of a lost column
in bending moments is large for L > H. The resulting strengthening
factors (-),; for beams and columns are

By = B(y)(n(r),c)/vaVLC =2.06 and
Ry = ROl ) /R = 1.2 )

In order to address optimal design under an initial damage con-
dition, we use independent design factors for beams (Az) and col-
umns (A¢). These are in addition to the usual code-recommended
factors, such that Az = A\¢ = 1 recovers the code-recommended
design [ASCE 7 (ASCE 2016); ASCE 41 (ASCE 2017)]. Hence,
strength equations [Eqs. (4)—(8)] are computed with B, replaced
by B, = )\BB?,, and with R, replaced by R. = AcRY, where Bg’,
and RO are the initial values of beam plastic hinge moment and
column crushing capacities, respectively. In the remainder of this
text, the frame designed under discretionary initial damage is re-
ferred to as the strengthened frame. Strengthening two floors of
the reference frame, has an impact of 13% on total construction
costs, as detailed later.

Limit States and Reliability Analysis

The risk-based cost-benefit analysis addressed herein combines
failure of the intact structure with failure/progressive collapse under
initial damage conditions. For the intact structure, the limit state
function for bending and global pancake collapse is

91( Mg Ac, X) = Ryr(Ag, Ay ++) =D —Lsg (14)

where r;(-) = deterministic strength function for the intact structure;
R; = nondimensional random variable describing uncertainty in the
strength of the intact structure, including model error; D = dead
load; Ly, = 50-year extreme live load; and X = vector of random

Table 1. Random variable statistics

system parameters. Usually, Eq. (14) is not a function of the
progressive collapse design factors Az and .. However, as the
structural elements are strengthened for load bridging under discre-
tionary element removal, the reliability index for normal loading
conditions also becomes a function of Az and A\.. The strength
function r;(+) for bending failure is given by Eq. (4) and for global
pancake by Eq. (6).

In case of localized initial damage, the limit state function is

given by

gLD()\Bv )‘C’ X) = RDrD()‘37 )‘Cs NpesNypg - ) —-D— Lupt (15)
where rp(-) = deterministic strength function for the damaged
structure; Rp = nondimensional random variable describing uncer-
tainty in the strength of the damaged structure, including model
error; and L,,, = sustained component of live load. In Eq. (15),
the strength function rj, (-) for bending is Eq. (5), for local crushing
is Eq. (7), and for global pancake failure is Eq. (8). Note that these
equations are valid for any number of removed columns (n, . < n,).
This includes the initial triggering event as well as the progressive
failure of columns.

By treating beam and column strength as the product of deter-
ministic functions (r; and rp) by single random variables (R; and
Rp), the limit state functions become linear, allowing a second-
moment solution. Statistics for R; and R, are different for the beam
and columns, as illustrated in Table 1. The statistics for these var-
iables reflect material variability and model error and were obtained
by simulation from data in Nowak et al. (2011). Data on random
variables R; and Ry should be reviewed in more practical applica-
tions, especially when considering horizontal loads and other
failure models.

By approximating the probability distributions of L,,, and Lsg
as Gaussian, the limit state functions become linear functions of
Gaussian variables, and reliability can be computed by the Cornell
reliability index (Melchers and Beck 2018). This is considered
accurate enough for the conceptual problem addressed herein.
For more practical applications, the use of FORM or Monte Carlo
simulation is recommended (Ang and Tang 2006; Melchers and
Beck 2018).

For an intact frame, the 50-year Cornell reliability index is

ri(Ags Ac) i, — (Bp + Hrg,)

550()\37)@) = ) > 5
\/rl()‘Bv)‘C) ok, +(op +o1,)

(16)

where p = mean; and o = standard deviation of the corresponding
variables. The reliability index for bending collapse of the intact
frame is obtained for r;(\z) = q{,’B‘pl [Eq. (4)], with B, = \zBY;
for global pancake collapse, 5% is computed with r;(\¢) = g&”
[Eq. (6)], with R, = A-R2.

Variable Mean (1) COV (o/p) Distribution References

Plastic moment strength, bending of RC 1.22 0.165 Normal Beck et al. (2020), based on Nowak et al. (2011).

beams/slabs (Rpy)

Crushing strength of RC columns (R.) 1.20 0.184 Normal Beck et al. (2020), based on Nowak et al. (2011).

Dead load (D) 1.05D,, 0.10 Normal Ellingwood et al. (1980), and Ellingwood and
Galambos (1982).

Live load, arbitrary point in time value (L) 0.25L, 0.55 Gamma Ellingwood et al. (1980), and Ellingwood and
Galambos (1982).

Live load, 50 years (Lsg) 1.0L, 0.25 Gumbel Ellingwood et al. (1980), and Ellingwood and
Galambos (1982).
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Table 2. Reliability index values for reference frame

Conditional on

Intact frame: initial damage:

1] Failure mode NLC Strengthened Damaged Optimized
(£97"  Global pancake  3.56 3.82 3.46 3.93
Local pancake — — 1.80 2.62
Bending 3.99 5.10 2.03 1.61
Catenary (v =2) 4.42 5.31 3.36 1.81
3% Global pancake  2.46 2.85 2.30 3.03
Local pancake — — —0.02 1.08
Bending 2.76 4.50 0.06 —0.45
Catenary (¢ =2) 3.43 4.83 1.84 —0.21

Note: Numbers presented in bold values are those that are usually
computed; other numbers are presented for completeness.

Given local initial damage, the conditional arbitrary-point-
in-time (apt) reliability index is

ﬁ = ﬁapt()‘& )‘Cﬂ Ny, nr,x)

_ rp(Ags Acs ety )b, — (p + ir,,,) (17)

\/rD()‘B’ AcsRpeo iy ) og + (0p + U%m)

The reliability indexes for bending collapse (33), local pancake
(Bpr), and global pancake (8p) are obtained using Eqgs. (5), (7),
and (8), respectively. In the following, since we mainly refer to lo-
cal damage conditions, the superscripts (-)>° and (-)?7" are dropped
for clarity of notation, when there is no risk of confusion. Reliabil-
ity indexes obtained for the initial design of the reference frame are
presented in Table 2. Numbers presented in bold values are those
that are not usually computed but which are presented here for com-
pleteness. Individual columns in Table 2 show how reliability
changes along the design process: from the initial design, under
normal loading conditions [Egs. (9) and (10)], to strengthening us-
ing Egs. (11) and (12) with A\ = A\¢ = 1, starting from the intact
condition and moving to the conditional damage condition. The last
column shows reliability indexes obtained from the risk optimiza-
tion, as detailed in the sequence.

Formulation of the Cost-Benefit Risk-Optimization
Problem

The decision to strengthen a structure, to make it able to bridge over
a removed load-bearing element, has an obvious impact on con-
struction costs. In order to investigate the cost-benefit of different
strengthening decisions, in potential initial damage scenarios, the
costs of strengthening have to be confronted with the costs of build-
ing the structure and the expected costs of failure. Costs of failure
include the costs of initial damage, cost of damage propagation, and
eventually, cost of full-frame collapse.

Construction Cost

In this paper, all cost terms are evaluated w.r.t. the cost for building
the frame structure. Hence, the cost of the structural frame is the
reference cost, Crgp. Costs of structural materials vary signifi-
cantly with geographical location in terms of absolute values and
in terms of the relative cost of steel to concrete. The cost of an RC
structure, for instance, depends on the cost of reinforcing steel, cost
of concrete, and cost of formwork and steel forming. These costs
vary significantly due to, for example, geographical factors. As a

© ASCE
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simplification, and in benefit of generality, we assume unitary costs
per length of beams and columns. For a span-to-height ratio of
L = 2H and for L = 6 m, the cost per meter of optimized beams
and columns was found to be about the same by Boito and Kripka
(2020). Hence, the reference cost is given by the total linear length
of the frame

Crer = Lns(nc - 1) + Hngn, (18)

This is understood as the cost of designing the frame under nor-
mal loading conditions. If the frame is strengthened to bridge over
failed elements, construction costs increase. Typically, design for
progressive collapse is of secondary nature (He et al. 2019); hence,
after the main elements are sized considering normal loading con-
ditions [Egs. (9) and (10)], they are verified under exceptional load-
ing or element removal conditions and eventually strengthened.
Typically, strengthening is done by increasing the steel reinforce-
ment area. When a column fails under a multispan beam, maximum
moments at the beam section above the column go from negative
to positive. Hence, one immediate strengthening action is to use
double (symmetric)instead of single reinforcement.

Considering typical ductile RC beams, we found that in order to
double the strength of a beam in bending, it is required to roughly
double the steel area. The impact in construction costs depends on
the participation factor of steel to total costs, given as ap for beams.
Hence, the cost of strengthening the beams of each floor for
bridging over 1. removed columns is proportional to the follow-
ing factor:

(AsapBss + (1 —ag)) (19)

Note that Eq. (19) includes the bending design factor Agz. Using
construction cost tables for Brazil (SINAPI 2020), we found that
the participation of steel in the total construction costs of a beam is
roughly 70%. Hence, our reference value is ap = 0.7, but other
values are also considered later in the paper. In Eq. (19), (I — «p)
is the fixed part of beam construction costs.

Using similar reasoning, the cost factor for strengthening frame
columns is written as

(AcacRys + (1 —ac)) (20)

Finding the participation cost factor of columns is more diffi-
cult, as it strongly depends on concrete strength, load eccentricity,
and other factors. Hence, in order to reduce the number of param-
eters in the analysis, we consider ac = agy = a = 0.7 in the fol-
lowing, unless stated otherwise. These factors should be verified
when addressing more practical problems.

To keep the presented cost terms in perspective, Praxedes and
Yuan (2021, 2022) strengthened two four-story four-bay frames to
bridge over the loss of a single internal column. Their strengthening
action was to increase the steel ratio of about half the frames (cover-
ing beams and columns above two out of four bays). By comparing
the construction cost of the strengthened frames with the cost of the
original frames, we arrive at 0.3 < o < 0.4. If the whole frames
were strengthened, one would obtain 0.6 < o < 0.8.

Another important strengthening decision refers to the number
of columns and the number of beams to be strengthened. In a
fully threat-independent design, all beams and columns should be
strengthened. However, such a decision has a strong impact on con-
struction costs and was shown not to be economical for typical
threat probabilities (Beck et al. 2020; Praxedes 2020; Praxedes and
Yuan 2021, 2022). For some threats like traffic accidents and ex-
plosions due to malevolent actions, first floor and building entrance
columns are obvious targets. However, the extent of the initial
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damage may not be limited to the first floor. Hence, in this paper,
the reference strengthening action is to reinforce all columns and all
beams of the first two floors. This goes in line with the findings of
Praxedes and Yuan (2022) that optimal robustness is obtained when
most reinforcement is allocated to the first floor, followed by the
second floor.

In order to simplify notation, the unitary construction costs of
beams and columns are written as

Cbeams (AB’ nreinf.s)
= {ns — Nyeinf.s + nreinf..v()‘BaBBsf + (1 - aB))} (21)

Ccnlumns()‘C’ nrein_f,s)
= {ns — Nyeinf.s + nreinf.s(ACO‘CRsf + (] - aC))} (22)

The presented terms include the original cost of construction,
plus the cost of strengthening per unit length. The total construction
cost is

1
CconxtA()‘B’ )‘C) = @ [L(nc - I)Cbeams ()‘B» nreiﬂf,s)

+ an Cculumns ()‘Cﬁ nreinf.s)] (23)
For usual design under normal loading conditions, the same cost

functions are considered, but with no strengthening (7,7 ¢ = 0).

Cost of Failure

For the conceptual study presented herein, the cost of failure is as-
sumed proportional to the extent of the damaged frame area. For an

initial damage event leading to loss of n? . columns from n? floors,
the cost of initial damage is
1
Cip = (2Ln}, + Hn},) (24)
Crer

Failure consequences are strongly dependent on nonstructural
factors, such as building surrounding environment and intended
use. Consequences of structural failure involve the costs of shut-
down for rehabilitation and repair (lost revenue), costs for removing
debris and rebuilding, damage to building contents and neighboring
facilities, injury, death, and environmental damage. Out of these,
only the cost of reconstruction depends on design safety margins.
Hence, to separate nonstructural consequence factors from the
structural reliability analysis, as advocated in Beck (2020) and
Beck et al. (2020, 2021), failure consequences are considered via
an independent cost parameter k. Failure cost multipliers are a
significant source of epistemic uncertainty, and they can change
significantly for different structures, real estate market conditions,
and economy interest rates (as failures occur in the future, w.r.t
construction time).

The cost of construction in Eq. (23) is the cost of the structural
frame. Marchand and Stevens (2015) studied ratios between the
costs of entire buildings and construction costs of structural frames.
These ratios were found to be 6.8 for RC frames, 16.7 for steel
frames, 4.4 for cold-formed steel, and 10.5 for wood structures.
Collapse failure costs are easily higher than the costs for recon-
structing the whole building, and not just the structural frame.
Hence, collapse failure cost multipliers can be significantly higher
than the figures presented and should be considered constant in-
stead of functions of Az and ..

Financial losses from the partial collapse of the Alfred P.
Murrah Federal Building were estimated at $652 million by Hewitt
(2003). This eight-story RC building was built in 1977 at a cost of
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$14.5 million, or 24.7 million 1995 dollars at an annual interest of
3%, which yields a total loss to building cost ratio of 26.4. The
partial collapse affected 42% of the floor area of the building; a
full collapse could bring this figure up significantly. Total losses
arising from the 9/11 WTC attacks were 40 times larger than
the building cost (Stewart 2017; Thons and Stewart 2020), whereas
a factor of 20 was found for the Pentagon (Muller and Stewart
2011). In a cost-benefit analysis of terrorism risk-reduction mea-
sures for buildings, Stewart (2017) considered total loss to building
cost ratios in the range 20—40. Considering these figures as a refer-
ence, herein we consider kK = 40 as a base case and an upper-range
value k = 80.

For engineering structures, brittle failures are usually more
critical than ductile failures. Ductile failures provide warnings,
allowing damaged structures to be evacuated, whereas brittle fail-
ures occur with little or no warning. When RC elements are prop-
erly designed, the bending failure of beam/slabs is mostly ductile.
The simple model by Masoero et al. (2013) does not consider col-
umn slenderness, nor the bending-compression failure of columns.
Since only axial load capacity is considered, we assume the crush-
ing failure of columns to be brittle. To account for the different
consequences of failure, the cost multiplier for brittle failure (local
and global pancake collapse) is twice that of ductile failure:
Kpritie = 2k guerize = 40, unless otherwise stated.

Costs of local collapse failures by bending or pancake are given
by the impacted frame area (total linear length) immediately
above the removed or failed column, multiplied by failure cost
multipliers k. The cost of bending collapse is computed as

k ctile .
CB(nr.c) = %(M”I[nr.c +1Ln.— 1}cheams()‘li = 1)

=+ Min[nr,ca nc}Hccolumns ()‘C = l)) (25)

and the cost of local pancake collapse is computed as

ki
Cpr(n,c) = % (Min[n,.+3,n, — 1]LCppgms(Ag = 1)

- Minfn, o + 2.1 JHC oy (A = 1) (26)

In Egs. (25) and (26), the Min[] operators warrant that costs of
local collapse will not exceed costs of global collapse if local pan-
cake progresses into global pancake collapse. The evolution of the
cost of local failures, in terms of the number of removed columns,
is illustrated in Fig. 12 of Beck et al. (2020).

The cost of global pancake collapse is given by frame volume
times the failure cost multiplier:

Cpg = kbrittlecconst()‘B =1 Ac= 1) (27)

Note that failure costs are computed w.r.t. the strengthened
frame but for unitary design factors Az = A- = 1. This makes
the optimization problem more stable, according to our experience
(Beck et al. 2019; Beck 2020). This can be justified as damage to
building contents, lost revenue, and costs of compensation are
one order of magnitude higher than structural material costs (as
reflected by k > 40).

Eq. (27) is also the collapse failure cost under normal loading
conditions: since the frame is regular, bending failure of one beam,
or crushing failure of one column, under uniform loading con-
ditions, represents the simultaneous failure of all beams and all
columns. This is an obvious simplification, as it neglects the
bay-to-bay and story-to-story variations in loading and in member
strengths that are observed in practice.
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Fig. 2. (a) Conditional failure probabilities; (b) conditional costs of failure; (c) progressive damage probability; and (d) expected costs of failure of
normal (fading lines) and strengthened (strong lines) frames, in terms of the number of failed columns (ny ).

Progressive Collapse of the Regular Frame

If the frame suffers initial damage, leading to loss of n? . columns
and n?; stories, progressive failure may occur. In the context of
progressive failure, we refer to the number of failed columns (nf.c)s
instead of the number of removed columns (n, .). Clearly, the role
of these variables in the formulation is the same, and the initial
number of failed columns is n . = n{ . The chain of events that
may follow initial damage includes

1. Bending failure of beams of the n% . + 1 affected bays, which
may propagate upwards affecting all floors, but is otherwise
self-arresting,

2. Local crushing failure of two adjacent columns, which may
propagate horizontally, affecting two additional bays, with
npe = nf + 2, and so on, until it is naturally arrested, or until
complete (global pancake) collapse and

3. Local crushing failure of nfL =n%_+2 columns may also
cause the bending failure of n .+ 3 bays and so on.

The likelihood of occurrence of the presented progressive
failure events is controlled by beam and column strengths, which
depend on design factors Az and A¢. The conditional probabilities
of occurrence of local bending, local pancake, and global pancake
collapse events are given as

pe = [=Bp(Ag. ns )], prr = ®[=Fpr(Ac.nyse)]
pPrc = (I)[_BPG(/\C’ nf,c)] (28)

In this problem, failure consequences are related to frame areas
that overlap [see Fig. 2 in Masoero et al. (2013)]. For the same
number of removed columns, the area affected by local pancake
collapse includes the area affected by bending collapse. Progressive
collapse due to local pancake, for ns . + 2, encompasses the same
area affected by local pancake with ny . failed columns. Global
pancake failure affects the whole frame. In this setting, a reasonable
approximation to the failure tree is to consider the maximum
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expected cost among all possible failure events. This approxima-
tion is also possible because the failure modes are likely to be
strongly correlated, as they depend on the same loads and initial
damage event.

For the initial discretionary column removal event, the maxi-
mum expected cost becomes

Max[ppCy(n} ), pprCp(n} ), PrcCrc(n} )] (29)

Note that Cpg > Cp; > Cp, but the presented terms are bal-
anced by the corresponding probabilities, which depend on partial
factors Az and A..

Local pancake collapse, with the removal of n?_ . columns, may
evolve into bending collapse or progressive local pancake collapse,
affecting 1’ . +2 columns, and so on. The conditional probability
that local pancake collapse will advance, to involve ny . + 2 col-
umns, is given by pp; (1. +2). The unconditional probability
is: ppr(nsc)ppr(nys.+2). Thus, the expected collapse cost for
progressive failure is given by

pro(ngc)ppr(nge +2)Max[pgCy(nys. +2), Cpp(ny . +2),
PrcCpc(nye +2)] (30)

With these preliminaries, the total expected cost for progressive
collapse failure of the regular 2D frame is given by

CTE(ABv >‘C) = Cconst.(}‘Bv >‘C) (a)
+Cconrrtr(17 1)(1)[_ %0()\3)} + CPG(I)[_B%%(/\C)] (b)
+proMax[ppCp( n?c) pPLCPL(n%c)vpPGCPG(n?‘,c)’ (c)

Max§"‘ " +2) {ppL(j—2)ppr(j)Max[ppCp(j),

Cpr(J), Pr6Crc(J)]}] (d)
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In Eq. (31), line (b) corresponds to the global failure of the intact
frame under normal loading conditions. Line (c) corresponds to the
maximum expected cost in the initial discretionary local damage
event. Line (d) accounts for the maximum expected cost during
the eventual progressive collapse. Note that the operator Max]|]|
in line (c) extends to line (d), i.e., only the event leading to maxi-
mum expected failure cost is computed. This warrants that the cost
of collapse will not exceed k10 Ceonsi. (1, 1). The counter j in line
(d) should vary in steps of two units.

Objective Function for Cost-Benefit Optimization

The cost terms defined in the last section, and grouped in Eq. (31),
already include the expected cost of failure of the intact structure
(due to bending or global pancake collapse), the expected costs of
progressive failure, and the expected costs of collapse. Hence, the
risk-optimization problem in Eq. (3) is solved, considering the total
expected costs in Eq. (31) as the objective function.

Results for the Reference Case

The formulation just presented was implemented in Mathematica
12. The optimization problem is solved using various built-in al-
gorithms of function Minimize (Wolfram Research 2018). Results
for the reference case are presented in this section.

Conditional Failure Probabilities, Conditional and
Expected Costs of Failure

We start by illustrating the conditional failure probabilities in
Eq. (28), the conditional costs of failure in Eqgs. (29) and (30),
and the expected costs of failure in lines (b), (c), and (d) of Eq. (31).

Figs. 2(a—d) show conditional failure probabilities, conditional
costs of failure, progressive damage probabilities, and expected
costs of failure as the number of failed columns increases for the
reference frame. The strong lines in these figures are the results for
the strengthened frame, whereas the fading lines correspond to the
normal frame (normal loading conditions). As expected, the re-
sponse of the strengthened frame, given initial damage, is better:
failure probabilities are smaller for all failure modes [Fig. 2(a)],
and expected costs of failure are significantly smaller [Fig. 2(d)].

In Fig. 2(a), we observe that conditional failure probabilities are
very large for the normal frame, especially in bending. For the
strengthened frame, conditional failure probabilities start smaller
but increase rapidly as the number of failed columns increases from
one to three. The conditional probability of global pancake failure
is small up until n; . = 3 and increases rapidly for ny . > 3. Condi-
tional costs of failure [Fig. 2(b)] are larger for the normal frame for
the initial number of removed columns (n(,)’c = 1). However, as the
number of failed columns increases, these conditional cost terms
become larger for the strengthened frame since the total cost of
the strengthened frame is larger than the total cost of the normal
frame. Damage probabilities [Fig. 2(c)] start at p[LD|n; ] =1
for ny. =1, but they drop faster for the strengthened frame as
ns . increases. Two opposing factors explain the V-shapes in ex-
pected costs of failure [Fig. 2(d)]: as the number of failed columns
increase, the damage area increases, but the event probabilities
decrease. As a result, we see that expected damage for the strength-
ened frame reaches a plateau that is much lower than the expected
damage for the normal frame.

The conditional probabilities and cost terms illustrated in
Fig. 2 are basically the same terms of the robustness index recently
proposed by Praxedes et al. (2021).
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Optimal Design of the Reference Frame

By solving the cost-benefit optimization problem in Eq. (3) for
prp = 0.1, the optimal design values A\ = 0.9 and \j- = 1.3 are
found. Hence, the optimizer reduces the strength of beams, and in-
creases the strength of columns, in comparison to the strengthening
resulting from Egs. (11) and (12). Conditional failure probabilities,
conditional costs of failure, local damage probabilities, and ex-
pected costs of failure of the optimally strengthened frame are com-
pared with the strengthened frame in Figs. 3(a—d).

As observed in Fig. 3(a), by reducing A\g, the optimizer in-
creases conditional bending failure probabilities for one and two lost
columns. At the same time, the optimal solution reduces the condi-
tional local pancake probabilities for up to five lost columns. Global
pancake collapse probability is reduced between three and six lost
columns. Fig. 3(b) shows that the conditional cost of bending failure
is not affected by the slight increase in conditional bending failure
probabilities. Yet, the conditional costs of local and global pan-
cake collapse are reduced for the optimally strengthened frame. The
changes observed in Figs. 3(a and b) are not very large, but they are
significant in terms of reducing the probability of damage propagation
[Fig. 3(c)] and the total expected costs of failure [Fig. 3(d)]. Hence, the
risk-optimization results in a better balance between the failure modes
and the corresponding expected costs of failure.

Results for Other Frame Configurations

Problem Variants

Several problem variants are considered in the sequence. This
includes frames of different aspect ratios (number of stories x
number of bays), as detailed in Table 3, as well as the aspect ratio
of the individual bays, failure cost multipliers, strengthening costs,
and size of the initial damage (Table 4). Table 3 includes a tall
frame with 16 stories and 4 bays, the reference “square” frame with
8 stories and 8 bays, a low frame 4 stories height with 16 bays,
as well as intermediate cases, all with similar “tributary” areas.
In the sequence, the seven frame variations detailed in Table 3 are
combined with the variations listed in Table 4. Further details about
Table 4 variations are discussed with the results.

Optimal Safety Factors versus Local Damage
Probability

Fig. 4 shows the optimal design factors A and Ay for tall and low
buildings (Table 3) as a function of local damage probability (p; p).
Fig. 5 shows corresponding optimal values of bending and pancake
reliability indexes, also for tall and low frames. Results for the refer-
ence frame follow the same pattern and would be situated between
those of the tall and the low frames in Figs. 4 and 5. As can be ob-
served, optimal reliability indexes (Fig. 5) follow the same overall
trend of the optimal design factors (Fig. 4), although the relationship
between them is not linear. Note that A\ = 0.85/0.65 = 1.3 corre-
sponds approximately to current design practice for RC columns.
As observed in Fig. 4, optimal design factors change signifi-
cantly with the probability of initial damage; the only exception is
the column design factor, which is indifferent to p;p for the low
frame. For the tall frame, optimal values of (- are as high as 1.6 for
prp = 1, dropping to around 1.2 for smaller p; . Clearly, for tall
frames with a smaller number of columns, the loss of a single
column has a much greater impact. Interestingly, for small p; p,
optimal A¢’s for tall frames is smaller than for low frames, a result
that may be counterintuitive at first sight. However, note that the
overload or strengthening factor for adjacent columns, given the
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Table 3. Variants of aspect ratio (number of stories X bays)

Table 4. Other problem variants

Aspect ratio
variations

Number of stories x bays
(ns X (ﬂ(, - 1))
(16 x 4) 64
(13x5) 65
(11 x6) 66
(8x8) 64
(6x11) 66
(5% 13) 65
(4 x 16) 64

Area

Tall frame

Intermediate

Intermediate

Reference case: “square” frame
Intermediate

Intermediate

Low frame

loss of a single column, is R,y = 1.0 for the low frame, but R, =
1.38 for the tall frame (Table 5). Hence, it is cheaper to strengthen
columns of the low frame, as the additional design margin is (only)
A¢ & 1.4 for these columns. For the tall frame, the cost of strength-
ening adjacent columns is proportional to 1.6 x 1.38 = 2.2, for
prp = 1, dropping to around 1.2 x 1.38 = 1.67 for smaller p;p.
It is also relevant that for low frames, global pancake failure is
unlikely for a single column failure; yet, the whole frame may col-
lapse if local pancake failure progresses horizontally (this could
also be avoided by structural fuses, which is not addressed herein).
Hence, it is relatively cheaper to protect the low frame against
progressive local pancake failure. For the tall frames, the loss of
a single column has a greater impact on local and global pancake
failure probabilities, as observed in Fig. 5.

Optimal design factors for bending are larger than one for tall
frames and p;p = 0.1, and smaller than one otherwise. Optimal
Ap’s are significantly larger for tall buildings, because bending
failures due to column loss propagate upwards, causing greater

© ASCE

Set

Problem variants

Case

1

Aspect ratio of
individual bays

Cost multipliers

Strengthening
cost

Extent of initial
damage

L = 2H reference case

L = H with half the tributary area

L = 2H by doubling the number of
columns (n,.)

L = 3H with 50% increase of tributary
area

Kauctite = 20, kprine = 40 different cost
multipliers, reference case

kduz‘rile = kbrittle = 40 same cost
multipliers for ductile and brittle failures
kauciite = 40, kp,iu. = 80 different cost
multipliers, increased

kaucrite = 50, kprizne = 200 different cost
multipliers, increased proportion

ap = ac = 0.7 reference case

ap = a¢c = 0.9 higher cost of
strengthening

ap = 0.5, ac = 0.9 different costs of
strengthening for beams/columns

ap = ac = 0.7, but all stories are
strengthened (M,¢jnf,s = 1)

(%, x n%) = (1x 1) reference case
(n%. x n%,) = (1 x0) reduced extent of
initial damage

(%, x n%) = (2 x 1) increased extent of
initial damage

(n%. x n%,) = (3 x 2) largest extent of
initial damage
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Table 5. Strengthening factors for beams (B,,) and columns (R) for
different frames and extents of initial damage [Eq. (13)]

Initial damage (1% . x n?,)
(ng X (n.—1)) (Ix1) (1x0) (2x1) (3x2)

Frame Factor

(16 x 4) Ry 1.38 1.42 1.98 247
(13 x5) Ry 1.29 1.34 1.87 2.29
(11 x 6) Ry 1.24 1.29 1.78 2.17
(8 x 8) Ry 115 1.23 1.66 1.95
(6x11) Ry 1.08 1.17 1.55 1.74
(5 x 13) Ry 1.04 1.15 1.48 1.60
(4 x 16) Ry 1.00 1.13 1.40 1.40
All B, 2.06 2.06 4.13 6.19

consequences for taller buildings. Optimal design factors for bend-
ing become significantly smaller as p; p is reduced. Very small val-
ues of \j; do not have practical significance, as minimal required
beam strength would likely be determined by serviceability (dis-
placement) limit states. Comparing Figs. 4 and 5, it can be observed
that when A} drops to about 0.6, the optimal bending reliability
index (3} drops to zero. As argued in Beck et al. (2020), this cor-
responds to an optimal design that is indifferent to the objective
consideration of discretionary column removal. This is detailed
in the sequence.
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Threshold Local Damage Probabilities

As illustrated in Figs. 4 and 5, the probability that a regular frame
suffers local damage, leading to the loss of one column and two
beams of a single floor, has a significant impact on the optimal
structural design. As p;p becomes smaller, the optimal design
changes from an alternative load path, or load bridging design, with
large design factors, to an alternative path design with minimal de-
sign factors, which eventually approaches the usual design (with no
discretionary element removals). This becomes a smooth transition
because the formulation proposed in Beck et al. (2020) and em-
ployed herein [Eq. (3)] combines normal and abnormal loading
conditions in the same objective function [Eq. (31)].

As argued by Beck et al. (2020, 2021), a threshold local damage
probability (p,) can be identified, above which design or strength-
ening considering discretionary element removals has better cost-
benefit than design under normal loading conditions. Two different
situations have to be acknowledged in this context: (A) design and
strengthening considering current normative (with A\g = Ao = 1);
and (B) designs resulting from risk optimization [Egs. (3) and (31)],
with optimal values \j; and Af. The resulting p¥:,’s are conceptu-
ally the same but numerically different.

When current normative is considered (situation A), threshold
local damage probabilities (p?;,) are identified by comparing
total expected costs for usual design [Egs. (9) and (10)], and for
design/strengthening considering discretionary element removals
[Egs. (11) and (12) with Az = A = 1]. This is illustrated in Figs.
4 and 7 of Beck et al. (2020) and in Figs. 4, 7, and 8 of Beck et al.
(2021). This agrees with the practical definition presented in Beck
et al. (2020) and reproduced in the introduction. In this paper, we
address a variety of frames, with different aspect ratios, different
initial damages, and different strengthening measures. For some
of the taller frames, conventional progressive collapse design with
Ap = A¢ = 1 is always cheaper than the design under normal load-
ing conditions. For some of the lower frames, the opposite is true.
For these cases, it is impossible to find a root of the difference be-
tween total expected costs; hence, the most practical interpretation
of pif, cannot be employed.

For the risk-optimization problem, the threshold local damage
probability (pi,) is a point of indifference of the optimal solution,
where two local minima with similar objective function values are
observed: one is an alternative path solution with reduced optimal
design margin for bending failure (A} < 1); the other is a solution
with A} < 1, which approaches the design under normal loading
conditions. These local minima solutions are illustrated in Figs. 3,
8,9, and 13-16 of Beck et al. (2020) and in Figs. 3 and 9 of Beck
et al. (2021). Local minima do not always exist, as seen in Fig. 6
of Beck et al. (2020). Automatic identification of local minima is
difficult to implement.

The indifferent behavior, leading to local minima of similar
total expected costs, is associated with a transition, from positive
to negative, of the optimal reliability index for bending, ;. This
transition is illustrated in Fig. 5 and Table 5 of Beck et al. (2020),
in Fig. 5 of Beck et al. (2021), and can also be observed in Fig. 5
for the tall and low frames considered herein. Hence, a practical
way of identifying the indifferent design is by finding the p;p
root for which the optimal bending reliability index [} is zero.
This approach is adopted in this paper. The Solve function of
Mathematica (Wolfram Research 2018) is used for root finding.
As can be observed in Fig. 5, for the low frame, pi*, ~ 0.05,
and for the tall frame, p') ~ 1073. Fig. 6 shows p?) values for
frames of different aspect ratio and following the problem variants
in Tables 3 and 4.

J. Struct. Eng.

J. Struct. Eng., 2022, 148(1): 04021229



Downloaded from ascelibrary.org by USP - Universidade de Sao Paulo on 05/26/22. Copyright ASCE. For personal use only; al rights reserved.

------ L=3H, 3Ay/2
-3.50
Tall (16x4) (13x5) (11x6) (8x8) (6x11) (5x13)  Low (4x16
(a) Aspect ratio (nsx(nc-1))
-1.0 -
“1s| e
-Eﬁ_j -2.0
E
oo
o
-
2.5 ag=ac=0.7
A o ag=ac=0.9
T ag=0.5, ac=0.9
-3.0 S ag=0ac=0.7, Nreinf,s=Ns
Tall (16x4)  (13x5) (11x6) (8x8) (6x11) (5x13)  Low (4x16)
(C) Aspect ratio (ngx(nc-1))

Kauc=20, Korit=40
-------- kauc=40, Kprit=40
------ kguc=40, Kpit=80
------ Kauc=50, Kpyit=200

1 -2.0 - L
$O < .
s . e
3 Lt
oo e
o -
a -
-2.5
& .
”~ al
.
_3.0- - £ 4 - - .
Tall (16x4)  (13x5) (11x6) (8x8) (6x11) (5x13)  Low(4x16)
(b) Aspect ratio (nsx(nc-1))
-1.0
i
-1.5 et
-v"’.‘
<a 2 ¥
L T
S >
3
g -2.0 .'/‘
Nee=1, Neg=1
"""" Nee=1, Ns=0
-2.5 == == Nge=2, Nes=1
------ Ne=3, Ng=2
Tall (16x4) (13x5) (11x6) (8x8) (6x11) (5x13)  Low (4x16)
(d) Aspect ratio (ngx(nc-1))

Fig. 6. Threshold local damage probability p', as a function of (a) frame and bay aspect ratios; (b) failure cost multipliers; (c) costs of strengthening;

and (d) extents of initial damage.

As observed in Fig. 6(a), lower frames require higher local dam-
age probabilities to justify strengthening with discretionary element
removal. For taller frames, the threshold p’LhD values are smaller,
dropping to about 10~*. This corresponds to an annual threat prob-
ability of 2 x 107, which is of the order of magnitude of usual
threats (gas explosions or fire, with 107 to 10 occurrences per
year). This shows that design considering discretionary element re-
movals can be economically justified for taller frames in an exten-
sion to results presented in Beck et al. (2020).

To keep the numbers in Fig. 6 in perspective, Thons and Stewart
(2019) found that protective measures for iconic bridges are not
economical for threat probabilities smaller than 10~* per year, and
Stewart (2017) found that strengthening buildings is only cost-
effective for threat probabilities larger than 10~ per building per
year. These numbers correspond to 50-year local damage probabil-
ities between 5 x 1073 < p# <5 x 1072, well within the range of
p') values in Fig. 6.

Results for Set 1: Effect of Frame and Bay Aspect
Ratios

Threshold Probabilities

Fig. 6(a) also shows threshold local damage probability results for
bays of different aspect ratios. The purple line is for the reference
case, with L = 2H. When the bay length is reduced by half (L =
H, dotted line), with a corresponding reduction in tributary area
(Ay), p', values are reduced. When the bay length is increased
by 50% (L = 3H, dashed blue line), with a corresponding increase
in tributary area, p'? values are increased. Yet, if the bay length

is reduced by half, by doubling the number of columns (L = H,
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dash-dotted red line), a different behavior is observed: pZ’D values
increase for lower frames but decrease for taller frames. Hence,
we observe that the frame aspect ratio, as given by the number
of stories X bays, or (n, X (n. — 1)), has a greater impact on results
than the actual aspect ratio of individual bays.

Optimal Design Factors and Reliability Indexes for

pp =01

As observed in Figs. 4 and 5, optimal design factors and reliability
indexes vary significantly with the initial local damage probability.
In the following, we analyze how these optimal values change for
the frames of different aspect ratios by fixing p;p = 0.1. Recall
that this 50-year probability corresponds to an annual threat prob-
ability of 2.1 x 1073, This value is above usual threat probabilities
for column loss in buildings but it is in the range for which
progressive collapse design is cost-effective for all frames studied
herein, as shown in Fig. 6.

Fig. 7 illustrates optimal design factors for beams (\}) and
columns (Ay) for all frame and bay aspect ratios considered
herein. Optimal bending design factors are nearly unitary for tall
frames and reduce continuously for lower frames. This matches
the behavior observed in Fig. 4: larger design factors are justified
for taller frames because bending failures would progress upwards.
As frame height is reduced, the p!; values observed in Fig. 6(a)
get closer to the fixed p;p = 0.1 of Fig. 7, this also explains why
optimal A;’s are reduced. The smallest A\;’s are obtained when
the number of columns is doubled, in comparison to the reference
case.

An interesting nonproportional effect is observed for the optimal
column design factors. As frame height increases, optimal A\(’s
are reduced. This trend was observed in Fig. 4: for lower frames,
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Fig. 7. Optimal design factors Aj; (fading lines) and \}. (strong lines),
as a function of frame and bay aspect ratios, for p;p, = 0.1.

the column strengthening factor R, is small, and the importance
of avoiding (progressive) local pancake failures is large. Yet, for
the three taller frames in Fig. 7, this tendency is reverted, and op-
timal A\}’s increase. This may be to avoid global pancake failures.
Optimal A\{’s for frames with a doubled number of columns show a
distinct, more indifferent behavior.

By looking at the joint behavior of A\;’s and Ai-’s and not con-
sidering the case with additional columns (dash-dotted red line), it
is observed that for frames lower than (11 x 6), reductions of Aj;’s
are accompanied by increases in Af. As the frames become lower
and wider, the consequences of beam failures are reduced (upward
progression), but the consequences of local pancake failures in-
crease (horizontal progression). For frames taller than (11 x 6), this
tendency changes, and both optimal design factors increase with
increased frame height (and reduction in the number of columns).
This occurs because the consequences of beam and column failures
increase with frame height. Hence, what we observe in Fig. 7 is a
competition between beam bending and column crushing failure
modes. The resources allocated into frame strengthening need to
be compensated by reductions in expected costs of failure. The op-
timal allocation of these resources between beams and columns
changes according to the frame and bay aspect ratios, as observed
in Fig. 7. Actual values of optimal design factors in Fig. 7 are valid
for this paper only, but the identified trends should be valid for real
structures as well.

Figs. 8-10 illustrate the optimal bending, local pancake, and
global pancake reliability indexes, respectively. Overall, the trends
observed in Fig. 7 can be identified in Figs. 8-10. The fading
lines in Figs. 8—10 illustrate reliability indexes obtained for the
usual progressive collapse design, with Az = A = 1. For bending
(Fig. 8), the usual design leads to constant G3‘s around (g = 2,
whereas optimal design has a large impact on bending failure prob-
abilities. For local pancake (Fig. 9) and global pancake (Fig. 10),
the usual progressive collapse design leads to nearly constant col-
lapse probabilities. These are significantly reduced by optimal de-
sign. Overall, it is observed in Figs. 8—10 that optimal design finds
a better balance between the different failure modes of the regular
frame subject to loss of load-bearing elements.

Results for Set 2: Effect of Cost Multipliers

It is expected that results of risk optimization depend, to a great
extent, on failure cost multipliers k. Consequences of failure
will vary significantly with building use and occupancy, as well
as the surrounding environment. Fig. 6(b) illustrates threshold local
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damage probabilities p¥' for different failure cost multipliers. The
continuous purple line is the result for the reference case, with
kpritie = 2k gueiire = 40. As observed, increased failure consequen-
ces lead to a drop in p’L”D values, making strengthening for load
bridging cost-effective for a greater range of frame structures.

Changes in kg, have a greater impact on p'. as this value is
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determined directly from the root 3; = O (ductile failure of beams
is assumed). A doubling of k.., for fixed kgyite, produced a mi-
nor impact on results (dotted and dash-dotted lines). Results for
optimal design factors and reliability indexes are similar to those
shown in Figs. 7-10 in terms of relative trends. Overall, for larger
cost multipliers, hence larger consequences of failure, optimal
design factors, and reliability indexes are larger. Optimal A}’s in-
crease with k.., and optimal A;’s increase with k.

Results for Set 3: Effect of Strengthening Cost

In Beck et al. (2020), it was shown for a single frame of 11 bays by
11 stories that the decision to strengthen a structure for load bridg-
ing over failed load-bearing elements depends on strengthening
costs. As discussed in the “Construction Cost” section, strengthen-
ing costs depend on local costs of materials, both absolute and
relative. Strengthening costs also depend strongly on the strength-
ening decisions, for instance, the decision on the number of
stories and bays to reinforce. Herein, the default strengthening de-
cision involves all columns and all beams of the first two floors
(Myeing,s = 2). Herein, we investigate the effects of strengthening
costs on the optimal design of a wider range of frames.

Fig. 6(c) illustrates local damage probability thresholds, pi,,
for different participation factors aig and . Recall that o is the
participation of cost of steel in strengthening RC beams: doubling
the plastic hinge strength of beams requires doubling the amount of
steel (approximately), and this would lead to a 2az impact on the
cost of strengthened beams. The continuous purple line in Fig. 6(c)
is the reference case, with ag = a¢ = 0.7, and n,;,¢ , = 2. When
the cost participation factors increase to agz = a¢c = 0.9, threshold
pi) values increase for all frames, making progressive design cost-
effective only for larger threat probabilities. If o is reduced to
ap = 0.5, with ac = 0.9, we observe that the impact of az reduc-
tion is larger than the impact of o increase (from 0.7). This is a
direct consequence of evaluating p¥) from the root 33 = 0. If par-
ticipation factors are maintained at g = o = 0.7 but the decision
is to reinforce the whole frame, p!/t) increases significantly for all
frames. Hence, since the strengthening decision has a greater
impact on construction costs, it is justified only for larger threat
probabilities. The threat probabilities that justify strengthening the
whole frame are significantly larger than usual values for gas ex-
plosion or fire threats.

Fig. 11 illustrates the optimal safety factors for beam bending
and column crushing in terms of the strengthening cost factors. The
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Fig. 11. Optimal design factors A} (fading lines) and A (strong lines),
as a function of frame aspect ratio, for different costs of strengthening
and PLp — 0.1.
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optimal \};’s vary in proportion to the beam cost participation factor
o, with larger Aj’s obtained for smaller ag. Similar behavior is
observed when « is increased: increasing o leads to a reduction
in AZ’s. When the relative value of cost factors changes, an unex-
pected behavior is observed: reducing ap while keeping a con-
stant produced a reduction in optimal A{’s for lower frames but an
increase in A;’s for taller frames. For taller frames, the reduction in
beam strengthening cost led to an increase in optimal A}’s but also
to an increase in optimal A;’s! This confirms the competition be-
tween failure modes, observed in Fig. 7: for tall frames, stronger
beams need to the accompanied by stronger columns in order to
avoid pancake failures. The dash-dotted red line in Fig. 11 shows
that the competition between failure modes is affected by the rel-
ative value of cost factors for strengthening beams and columns.

Results for Set 4: Effect of Extent of Initial Damage

One of the largest unknowns in alternative path (APM) design is
the extent of initial damage, for which alternative load paths should
be developed. This uncertainty relates to the actual response of the
structure, given unknown initial damage, but also to the discretion-
ary element removal scenarios for which APM strengthening is
performed. To simplify matters, in this paper, a match is considered
between the design and the actual initial damage scenario.
Mismatches should be addressed in future research.

Clearly, strengthening frames to sustain larger initial damage
has an impact on construction costs. Table 5 shows the factors
required for strengthening beams and columns to sustain the initial
damages listed in Set 4 of Table 4 (and in the header of Table 5).
For the beams to sustain loss of 1, 2 and 3 columns requires plastic
hinge strengths that are about 2x, 4x, and 6x larger than the
strength under normal loading conditions. The strengthening fac-
tor for columns varies significantly with frame height, as shown in
Table 5.

Fig. 6(d) shows how the local damage probability thresholds,
pih, changes for different extents of initial damage. The reference
case, with (n. x n?) = (1 x 1), is shown as a continuous purple
line. As observed, a reduction in the number of affected beams
(n%, = 0) has no impact on p'", (lines are superimposed). Yet, in-
creasing the number of removed columns (n?,.) has a large impact,
making APM design economical only for larger threat probabil-
ities. Typically, the probability of initial damage is inversely pro-
portional to the extent of initial damage. A comprehensive analysis
would require addressing conditional probabilities of progressive
collapse given one, two, or more removed columns. This will be
addressed in future research. Fig. 6(d) shows an intermingling
effect of the results for two and three columns removed; this also
deserves further investigation.

Fig. 12 illustrates the optimal safety factors for beam bending
and column crushing in terms of the extent of initial damage. As
observed, the initial damage has a larger impact on the optimal
design factors for columns. Although load bridging over a larger
span has a significant impact on beam strengthening factors (B,;
in Table 5), this does not reflect in large changes in optimal \}’s.

The competition between failure modes is also significantly af-
fected by the extent of initial damage. The opposing trend between
optimal A\;’s and A\:‘s, which in Fig. 11 was observed for frames
lower than (11 x 6), is now observed only for the two lowest
frames (right in Fig. 12). With larger initial damage (n%, =2
or 3), the increase in Ay for taller frames is accompanied by an
increase in Ay. For the larger extent of damage, strengthening
beams makes pancake failures more likely. To avoid this, beams
and columns need to be strengthened simultaneously.
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Effects of Catenary Action

Catenary action provides significant additional strength to beams
in progressive collapse. So far in this paper, catenary effects have
not been included mainly because catenary effects are not objec-
tively considered when determining required beam strengths and
dimensions.

Egs. (4) and (5) provide the distributed loads that produce
plastic hinge mechanisms in beams of intact and damaged frames.
Following Masoero et al. (2013), axial catenary effects can be
considered by adding the following terms to Egs. (4) and (5)

16B
qitr = Lzy (1 +%) (intact frame) (32)
4B, "
B.pl y
g (n,..) =—5—"— <1 + —>, (damaged frame)  (33)
L2(n,) 4

where 0 <1 <4 is a dimensionless parameter depending on the
kinematics of the failure mechanism and the beam’s slenderness
(Masoero et al. 2013). In this section, we briefly investigate the
effects of considering catenary actions in the optimal risk-based
design of regular frames using ¢ = 2.

The catenary limit states derived from Eqgs. (32) and (33) cor-
respond to the ultimate limit before complete beam/slab collapses,
but substantial (irrecoverable) building damage can be expected
before this limit is reached. For the reference frame case considered
in the “Results for the Reference Case” section, reliability indexes
corresponding to the “catenary” limit states are shown in Table 2.
As observed, catenary effects lead to higher beam reliability in-
dexes. For the damaged condition, in particular, 3*?" shows a sig-
nificant increase from 2.03 to 3.36. In the risk optimization, this
represents a reduced likelihood of ultimate beam collapse; yet,
since significant building damage is expected for beam plastic
hinge failures, we understand catenary action does not need to be
considered in the optimization, as reported in previous sections.
This is also a justification for considering larger failure cost multi-
pliers for column failures in comparison to beam failures.

For completeness, we briefly report what happens when the addi-
tional beam strength, provided by catenary action, is considered in
the risk-based optimization. Briefly, optimal design factors for
beams, reported in Figs. 4, 7, 11, and 12, become significantly
smaller, mostly smaller than 0.5. This clearly has no practical sig-
nificance, as minimal beam strength would most certainly be
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determined by serviceability (displacement) limit states. Moreover,
threshold columns loss probabilities determined as “zero-crossings”
of the catenary beam reliability indexes go asymptotically to zero
(when compared with Fig. 6). Loosely, this means that beam
strengthening to produce catenary action has a positive cost-benefit
for any initial damage probability; an observation that matches prac-
tical design recommendations.

Concluding Remarks

In this paper, we addressed the optimal design of regular frame
structures subject to local damage due to abnormal events, leading
to the loss of beams and columns. We employed a risk-based for-
mulation that balances the costs of strengthening with the expected
costs of progressive failure. We employed a simple analytical
mechanical model where beams fail by plastic hinge mechanisms
and columns fail by crushing under compressive loads. The model
is limited to gravitational loads.

The analysis covered regular RC frames of different aspect
ratios, failure consequences, cost of strengthening, and extent of
initial damage. Results show that the economic benefit of strength-
ening frames to bridge over failed load-bearing elements (alterna-
tive path method or APM) is strongly dependent on threat
probabilities. However, threshold local damage probabilities, above
which APM design is justified, also depend strongly on frame
aspect ratio, consequences of progressive collapse, and cost and
reach of the strengthening measures. Typically, APM design is
justified for larger threats, taller frames, larger progressive collapse
consequences, cheaper strengthening, and limited strengthening
measures. Typically, only targeted strengthening actions are cost-
effective.

The analysis of optimal design factors for beams and columns
and of frames of different aspect ratios revealed that local bending,
local pancake, and global pancake failure modes “compete” for the
strengthening resources. These resources need to be compensated
by effective reductions in expected costs of failure. The optimal
allocation of strengthening between beams and columns changes
according to the frame aspect ratio. For lower frames, smaller de-
sign margins for beam bending are accompanied by larger margins
against column crushing since bending failures progress upwards,
whereas local pancake progresses horizontally. For taller frames
and for greater initial damage, stronger beams need to the accom-
panied by stronger columns in order to avoid local and global
pancake failures.

Results presented herein were obtained for simple mechanical
modeling but provide useful insight for the optimal cost-benefit
analysis and design of realistic structures.

Data Availability Statement
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request.
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